Definitions:

Let S be a nonempty subset of \mathbb{R}, i.e. $\phi \neq S \subseteq \mathbb{R}$
(1) If $x_{0} \in S$ and $x \leq x_{0}$ for all $x \in S$, then x_{0} is called the maximum of $S .\left(x_{0}=\max S.\right)$
(2) If $x_{0} \in S$ and $x_{0} \leq x$ for all $x \in S$, then x_{0} is called the minimum of $S .\left(x_{0}=\min S.\right)$
(3) If $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$, then M is called an upper bound of S and the set S is bounded above.
(4) If $\exists m \in \mathbb{R}$ such that $m \leq x$ for all $x \in S$, then m is called a lower bound of S and the set S is bounded below.
(5) If $\exists m, M \in \mathbb{R}$ such that $m \leq x \leq M \forall x \in S$, then S is bounded.
(6) If S is bounded above and S has a least upper bound M_{0}, then M_{0} is called the supremum of S and denoted by $\sup S$.
(7) If S is bounded below and S has a greatest lower bound m_{0}, then m_{0} is called the infimum of S and denoted by $\inf S$.

The Completeness Axiom

A fundamental property of the set \mathbb{R} of real numbers :
Completeness Axiom : \mathbb{R} has "no gaps".
$\forall S \subseteq \mathbb{R}$ and $S \neq \emptyset$,
If S is bounded above, then $\sup S$ exists and $\sup S \in \mathbb{R}$.
(that is, the set S has a least upper bound which is a real number).
Note: "The Completeness Axiom" distinguishes the set of real numbers \mathbb{R} from other sets such as the set \mathbb{Q} of rational numbers.

Example: Let $A:=\{r \in \mathbb{Q} \mid 0 \leq r \leq \sqrt{2}\} \subseteq \mathbb{Q}$.
(1) Is the set A bounded above?
(2) Does it has a least upper bound in A ?

Examples: Find the inf and sup of the following sets, if possible. State whether or not these numbers are in S.

1. $S=\{x \mid 0<x \leq 3\}$
2. $S=\left\{x \mid x^{2}-2 x-3<0\right\}$
3. $S=\{x \mid 0<x<5, \cos (x)=0\}$
4. $S=\left\{x \left\lvert\, x=\frac{1}{n}\right., n \in \mathbb{N}\right\}$

Some properties of sup and inf Theorem. If x_{1} and x_{2} are least upper bounds for the set A, then $x_{1}=x_{2}$.

Theorem. If the sets A and B are bounded above and $A \subseteq B$, then $\sup (A) \leq \sup (B)$.

